Search results

1 – 6 of 6
Article
Publication date: 10 May 2018

Chao Zeng, Chenguang Yang, Zhaopeng Chen and Shi-Lu Dai

Teaching by demonstration (TbD) is a promising way for robot learning skills in human and robot collaborative hybrid manufacturing lines. Traditionally, TbD systems have only…

1066

Abstract

Purpose

Teaching by demonstration (TbD) is a promising way for robot learning skills in human and robot collaborative hybrid manufacturing lines. Traditionally, TbD systems have only concentrated on how to enable robots to learn movement skills from humans. This paper aims to develop an extended TbD system which can also enable learning stiffness regulation strategies from humans.

Design/methodology/approach

Here, the authors propose an extended dynamical motor primitives (DMP) framework to achieve this goal. In addition to the advantages of the traditional ones, the authors’ framework can enable robots to simultaneously learn stiffness and the movement from human demonstrations. Additionally, Gaussian mixture model (GMM) is used to capture the features of movement and of stiffness from multiple demonstrations of the same skill. Human limb surface electromyography (sEMG) signals are estimated to obtain the reference stiffness profiles.

Findings

The authors have experimentally demonstrated the effectiveness of the proposed framework. It shows that the authors approach could allow the robot to execute tasks in a variable impedance control mode with the learned movement trajectories and stiffness profiles.

Originality/value

In robot skill acquisition, DMP is widely used to encode robotic behaviors. So far, however, these DMP modes do not provide the ability to properly represent and generalize stiffness profiles. The authors argue that both movement trajectories and stiffness profiles should be considered equally in robot skill learning. The authors’ approach has great potential of applications in the future hybrid manufacturing lines.

Details

Assembly Automation, vol. 38 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 2 October 2018

Fenglei Ni, Tianhui Li, Yiwei Liu, Hong Liu, Yang Li, Liangliang Zhao and Zhaopeng Chen

The purpose of this paper is to study the dynamic modeling and controller design for the series element actuator (SEA) joints. The robot equipped with SEA joints is a strong…

Abstract

Purpose

The purpose of this paper is to study the dynamic modeling and controller design for the series element actuator (SEA) joints. The robot equipped with SEA joints is a strong coupling, nonlinear, highly flexible system, which can prevent itself from damaging by the accidental impact and the people to be injured by the robot.

Design/methodology/approach

Based on the torque source model, the authors built a dynamic model for the SEA joint. To improve the accuracy of this model, the authors designed an elastic element into the joint and implemented the vector control for the joint motor. A control method of combined PD controller and back-stepping was proposed. Moreover, the torque control could be transformed into position control by stiffness transformation.

Findings

The established model and the proposed method are verified by the position and torque control experiments. The experimental results show that the dynamic model of the SEA joint is accurate and the proposed control strategies for the SEA joint are reasonable and feasible.

Originality/value

The main contribution of the paper is as follows: designing an elastic element with high linearity to improve the model accuracy of the SEA joint. The control strategy-based back-stepping method for the SEA joint is proposed to increase the robustness of the controller.

Details

Assembly Automation, vol. 38 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 5 December 2016

Ruijie Zhang, Xiaoyan Liu, Zhaopeng Wang and Fei Gao

The purpose of this study is to research the effects of interrupted aging on the corrosion behavior of Al–Cu–Mg–Ag heat-resistant alloy by means of intergranular corrosion (IGC…

Abstract

Purpose

The purpose of this study is to research the effects of interrupted aging on the corrosion behavior of Al–Cu–Mg–Ag heat-resistant alloy by means of intergranular corrosion (IGC) testing, potentiodynamic polarization combined with optical microscopy and transmission electron microscopy.

Design/methodology/approach

The results show that the IGC began on the grain boundaries and continued along the grain boundary. The corrosion resistance property of Al–Cu–Mg–Ag alloy was enhanced by interrupted aging. The precipitations of the interrupted aged sample both in the grains and on the grain boundaries were fine, and the chain-like phases on the grain boundary were distributed nearly continuously.

Findings

The corrosion resistance of Al–Cu–Mg series Al alloy with equilibrium phase (Al2Cu) is notably determined by precipitation-free zone (PFZ) as the self-corrosion potentials of (Al2Cu), PFZ and the matrix satisfied the relation EPFZ < Eθ<EMatrix.

Originality/value

The connections of the PFZ on both sides of the grain boundary decreased the corrosion resistance of Al–Cu–Mg–Ag alloy treated by the single aging.

Details

World Journal of Engineering, vol. 13 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 April 2021

Zhaopeng Wang, Yi Wang, Bowei Zhang, Zhan Zhang, Kui Xiao, Junsheng Wu, Qiong Yao, Guojia Ma and Gang Sun

The purpose of this paper is to investigate the influence of the potential of hydrogen (pH) and dissolved oxygen in artificial seawater on the passivation behavior of 316L…

Abstract

Purpose

The purpose of this paper is to investigate the influence of the potential of hydrogen (pH) and dissolved oxygen in artificial seawater on the passivation behavior of 316L stainless steel.

Design/methodology/approach

The corrosion behavior was studied by using electrochemical measurements such as electrochemical impedance spectroscopy and polarization curve. The passive films were characterized with X-ray photoelectron spectroscopy.

Findings

The polarization resistance of the passive film decreases as the pH value drops ascribed to the formation of much more point defects. The donor carrier concentration (ND) in the passive film formed in the deaerated condition is lower than that in aerated conditions. Nevertheless, this phenomenon is the opposite when the pH value is 1 due to the significant decrease of Fe oxides/hydroxides coupled with the stable content of Cr oxides/hydroxides species. In addition, the compositional variation of the passive film also leads to the changes of its semiconductor properties from N-type to bipolar type.

Originality/value

This paper shows the variation of polarization resistance, corrosion potential, passive film composition and semiconductor properties with the pH value and dissolved oxygen. The results can serve as references to the further study on crevice corrosion of 316L in seawater.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 April 2021

Md Delwar Hossain, Md Kamrul Hassan, Anthony Chun Yin Yuen, Yaping He, Swapan Saha and Waseem Hittini

The purpose of this study is to review and summarise the existing available literature on lightweight cladding systems to provide detailed information on fire behaviour…

Abstract

Purpose

The purpose of this study is to review and summarise the existing available literature on lightweight cladding systems to provide detailed information on fire behaviour (ignitibility, heat release rate and smoke toxicity) and various test method protocols. Additionally, the paper discusses the challenges and provides updated knowledge and recommendation on selective-fire mechanisms such as rapid-fire spread, air cavity and fire re-entry behaviours due to dripping and melting of lightweight composite claddings.

Design/methodology/approach

A comprehensive literature review on fire behaviour, fire hazard and testing methods of lightweight composite claddings has been conducted in this research. In summarising all possible fire hazards, particular attention is given to the potential impact of toxicity of lightweight cladding fires. In addition, various criteria for fire performance evaluation of lightweight composite claddings are also highlighted. These evaluations are generally categorised as small-, intermediate- and large-scale test methods.

Findings

The major challenges of lightweight claddings are rapid fire spread, smoke production and toxicity and inconsistency in fire testing.

Originality/value

The review highlights the current challenges in cladding fire, smoke toxicity, testing system and regulation to provide some research recommendations to address the identified challenges.

Details

Journal of Structural Fire Engineering, vol. 12 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 3 June 2021

Fashu Xu, Rui Huang, Hong Cheng, Min Fan and Jing Qiu

This paper aims at the problem of attaching the data of doctors, patients and the real-time sensor data of the exoskeleton to the cloud in intelligent rehabilitation applications…

Abstract

Purpose

This paper aims at the problem of attaching the data of doctors, patients and the real-time sensor data of the exoskeleton to the cloud in intelligent rehabilitation applications. This study designed the exoskeleton cloud-brain platform and validated its safety assessment.

Design/methodology/approach

According to the dimension of data and the transmission speed, this paper implements a three-layer cloud-brain platform of exoskeleton based on Alibaba Cloud's Lambda-like architecture. At the same time, given the human–machine safety status detection problem of the exoskeleton, this paper built a personalized machine-learning safety detection module for users with the multi-dimensional sensor data cloned by the cloud-brain platform. This module includes an abnormality detection model, prediction model and state classification model of the human–machine state.

Findings

These functions of the exoskeleton cloud-brain and the algorithms based on it were validated by the experiments, they meet the needs of use.

Originality/value

This thesis innovatively proposes a cloud-brain platform for exoskeletons, beginning the digitalization and intelligence of the exoskeletal rehabilitation process and laying the foundation for future intelligent assistance systems.

Details

Assembly Automation, vol. 41 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 6 of 6